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For the zero layer we have 

At =½~,  so tha t  l 0 = : ~ r 0 - 2  p .  

Rotation axis ~ 

Fig. 5. 

The measured value of At is /Z '=  ½~(I/lo) 
Table 1), so tha t  

(see 

AAt = At-At' nro-2P 

We note tha t  A/Z--> 0 as /Z-+ 0. Substituting for # 
and A/Z in equation (2), we have 

Aa ~P (1 2 ½ ~ - - v  / cos 2 v. cosec v.  (3) 
a zer o -  2p ze cos v / 

In  the region of extrapolation, where /Z-~ 0, the 
quant i ty  in brackets does not vary  very rapidly, so 
we may justifiably write 

Aa 
- =  K COS 2 ~ . C O S e C  Y . a 
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A brief account is given of some of the mathematics pertinent to the calctflation of Fourier trans- 
forms in cylindrical co-ordinates, and a systematic derivation is given of the Fourier transforms 
of a number of curves and surfaces which are most naturally expressed in cylindrical co-ordinates. 

1. Introduction 

Recent interest in the helical structures found in 
certain molecules of biological origin has drawn atten- 
tion to the need for studying Fourier transforms in 
cylindrical co-ordinates. The transforms which have 
been used have been worked out by a variety of dif- 
ferent techniques, and the purpose of this note is to 
collect together and give a systematic derivation of the 
transforms of a number of configurations most natu- 
rally expressed in cylindrical co-ordinates. Some of the 
relevant mathematics is briefly discussed, and atten- 
tion is drawn to the 6-function for the description of 
curves and surfaces in space. The (5-functions used 
have been properly normalized in terms of the line- 
and surface-densities of the diffracting material. 

* On leave at the Cyclotron Laboratory, Harvard Univer- 
sity, Cambridge, Mass., U.S.A. 

2. The t%function and its applications 

The &function introduced by Dirac (1930) is not 
strictly a function at all, although it has gained 
mathematical respectability since the work of Schwartz 
(1950), and the way in which it is used may be re- 
garded as a quick method of obtaining results which 
should then be verified by more exact ~nalysis; but  
in physics this verification is seldom necessary. 

The following properties of the ~-function will be 
used: 

d (x) = exp [2zeixt] dt, (1) 
--OO 

sin (2:~ax) 
~(x) = lira , (2) 

a- ->oo  7~X 

+ o o  
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The /i-function m a y  be used to describe idealized 
distr ibutions of ma t t e r  such as points, lines, etc., a few 
examples  being as follows. A point  mass at the point  
(x0, Y0, %) m a y  be described by the densi ty  funct ion 
m/i(X-Xo)/i(y-yo)5(Z-Zo), where m is the mass. A line 
densi ty  m a y  be described by the densi ty  funct ion 
~/i(y-yo)/i(Z-Zo) if it  has line densi ty ;t along a 
s t raight  line parallel  to the x axis passing through the 
point  (Y0, zo). In  cylindrical  co-ordinates (r, 0, z) an 
inf ini te ly  th in  circle of radius r o about  the z axis and 
in the plane z = z o (with line density ;t) is given by  
the densi ty funct ion ~/i(r-ro)/i(z-zo). A helix with 
radius r 0 and pi tch P,  parallel  to and centred on the 
z axis, with line densi ty  ~ is given by  the densi ty  
funct ion 

~)(r, 0, z) = ;t[1 + (Pe/4ze2r~)]½/i(r-ro)/i(O-(2zez/P)). (4) 

The first /t-function shows tha t  ~ is zero except on a 
cylinder of radius ro, and the second shows tha t  Q is 
zero unless 0 = 2gz/P, which is the relation between 
0 and z for a helix of pi tch P passing through z = 0 
when 0 = 0. Other phases of the helix relative to the 
origin m a y  be obtained by  inserting a constant  into 
the argument  of the second/i-function.  To verify tha t  
the l ine-density is ;t, calculate the total  mass m in 
one turn  of the helix:  

m = 211+ (P2/4z~er~)]½ 

× f °° f~fPd(r-ro) / i (O-(2xcz/P))rdrdOdz 
0 ¢ 0  ~0 

= ~ro[l+(Pe/47~2r~)]½S:'S:/i(O-(2gz/P))dOdz. 

The /i-function in tegrand vanishes unless z = PO/2~. 
Hence we have, for a par t icular  value of 0, 

f Po(o--(zT~z/P))dz = 1 
0 

as long as 0 _< 0 _< 2re, and, since this holds for all 0 
in the range of the 0-integration, 

m -- ~tr0[1 ÷ (P2/4~r~)]½ f~dO 2~r0A[1 (P2/47~2r~)]½. ÷ 

The arc length of a single tu rn  of the helix is 
[P2÷4~2r~]½ so ;t is indeed the line density. 

The definit ion (1) m a y  be immedia te ly  extended to 
three dimensions to become 

a(x)~(y)~(z) 

= exp [ 2 ~ i ( x X + y Y + z Z ) ] d x d y d z ,  

which m a y  be more compact ly  writ ten 

d (X) = exp [2~ix.  X] d x ,  (5) 

where (x, g, z) and (X, Y, Z) are the rectangular  

Cartesian components of vectors x and X respec- 
t ively and dx-= dxdydz, the volume element in x 
space. 

The three-dimensional  form of the Fourier  t ransform 
theorem m a y  be written, with the same convention, 

f (X)  = exp [2~ix.  X]dx,  

In  applications of Fourier  t ransforms to diffraction, 
the funct ion g(x) is taken to be the densi ty  of dif- 
fract ing mater ia l  at  a point  x in space, f (X)  is then  
the diffracted ampl i tude  at the point  X in reciprocal 
space. 

3. F o u r i e r  t r a n s f o r m s  in p o l a r  c o - o r d i n a t e s  

In  two dimensions the Fourier  t ransform theorem 
takes the form 

SS f ( X ,  Y) -- g(x, g) exp [2~ i ( xX+yY) ]dxdy  , (7a) 

~'~e('+~ X g(x, y) ---- ,~,J ~ - J (  , ]Z)exp [ - 2 7 d ( x X  + y Y ) ]dX  d Y .  
(7b) 

Equat ions  (7) m a y  be t ransformed to polar co- 
ordinates (r, 0) in x space and (R, yJ) in X space by  
the t ransformat ion 

x = r cos O, X = R cos y~ , 
y = r s i n 0 ,  Y = R s i n v J ,  

to give 

f (R ,  v2) = g(r, O) exp [2~iRr cos (O-~)]rdrdO , 
, 0  0 (aa) 

g(r, O) = yJ) exp [ - 2 ~ i R r  cos (O-v2)]RdRdv 2 . 
0 (8b) 

In  the special case where f (R ,  yJ) m a y  be wri t ten ifi 
the form f (R ,  v2) = fn(R) exp [inv,] then  (8b) becomes 

g(r, O) = f : f n ( R ) R d R  

x exp [ - i [2~Rr  cos (O-v2)-nv2]]d~, 
o 

which, on making  the t ransformat ion O-v,o = - (:~ + ~0), 
becomes 

f g(r, O) = exp [in(O+~)] f n ( R ) R d R  
0 

x exp [i [2~Rr cos q)-  nq)]] dq~ 

S -- exp [inO] exp [in3~/212~ fn (R)Jn(2~Rr)RdR , 
0 (9) 
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where Jn(x) is the Bessel function of order n (see 
Appendix, equation (44)). Thus (8b) becomes 

g(r, 0) = exp [inO] exp [in3ze/2]g,~(r), (10) 
where 

g,~(r) = 2xe fn(R)Jn(2X~Rr)RdR. (11) 
0 

On substituting the value of g(r, O) given by (10) 
into (8a), a similar calculation shows tha t  

f~(R) exp [inv2] = 2re exp [inv/] g~ (r)J~ (2~rR)rdr , 
o (12) 

and hence 

f,~(R) = 2~ g,~(r)J~ (2~Rr)rdr .  (13) 
o 

Functions f~(R) and gn(r) related by (11) and (13) 
are known as Fourier-Bessel transforms (Margenau 
& Murphy, 1956) and they are of basic importance 
in calculating Fourier transforms of functions which 
may be expressed as a Fourier series, as will be seen 
from the following. ~ n y  function f (R ,  v2) which is 
single-valued and continuous, except along a finite 
number of ares in the (R, v2) plane, may be expanded 
in a Fourier series 

+co 

f (R ,  v2) = ,,~ f~(R) exp [inv2] , 

where 
1 f'2~ 

f~(R) = ~ 1o f (R ,  ~v) exp I - in ,r ider .  (14) 

Using the above results, the Fourier transform of 
f (R ,  v/) is 

+co 

g(r, O) = ~, gn(r) exp [inO] exp [in3~/2] , (15) 
n ~ - - - O 0  

where gn(r) is given in terms of f,~(R) by (11). But 
g(r, O) may itself by expanded in a Fourier series 

+ C O  

g(r, O) = .~  gn(r) exp [inO] , (16) 

where 
gn(r) = g,~(r) exp [in3z~/2] . (17) 

Thus the Fourier-Bessel transforms form the basis for 
expressing Fourier transform of a function which may 
be expanded in a Fourier series in the plane as another 
Fourier series. 

4. Four ier  t r a n s f o r m s  in cy l indr ica l  c o - o r d i n a t e s  

Equations (6) may be transformed to cylindrical co- 
ordinates (r, 0, z) and (R, v 2, Z) in the x and X spaces 
respectively by the transformation 

x = r c o s 0 ,  X = R cos ~ , 
y - - r s i n 0 ,  Y = R s i n v / ,  
z = z ,  Z = Z ,  

to give the Fourier transform theorem in cylindrical 
co-ordinates: 

× exp [2gi[Rr cos (O-v/ )+zZ]]rdrdOdz,  (18a) 

g(r, O, z) = (R, v/, Z) 
o o 

× exp [ - 2 z d [ R r  cos (O-v / )+zZ]]RdRdv2dZ.  (18b) 

Equation (18a) will now be used to derive the Fourier 
transforms of a number of distributions of diffracting 
material which are most naturally expressed in cylin- 
drical co-ordinates. 

Plane distributions 
When the distribution is confined to the plane 

z = z 0, the density of diffracting mat ter  may be written 

g(r, O, z) = G(r, O)~(z-zo) , (19) 

so tha t  the Fourier transform becomes 

f (R ,  ~, Z) = exp [27dz 0 Z] G(r, O) 
o 0 

× exp [2gi[Rr cos(O-v2)]]rdrdO. (20) 

In  general G(r, O) may be expanded in a Fourier 
series, as in (16): 

-t-C~ _ _  

G(r, O) = ~, G,~ (r) exp [inO] , (21) 

- -  1 I n = G(r, O) exp [- inO]dO,  (22) On (r) ~ 0 

so tha t  
-{-OO 

f ( R ,  y~, Z) = exp [2gizoZ] ~, f n ( R ) e x p  [inv/] , (23) 
n ~ - - -OO 

where 

S fn(R)  = 2 ~ e x p [ - ( i n 3 ~ / 2 ) ]  O-~(r)Jn(2~Rr)rdr, (24) 
o 

using the properties of the Fourier-Bessel transforms. 
Some special cases will now be considered. 

(i) Variable density on a circular ring of radius ro.-- 
Here we may take 

G(r, O) = e)(r-ro)H(O ) , (25) 

where H(O) is the variable line density and may be 
expanded in a Fourier series: 

-]-00 

H(O) = ~, H,~ exp [inO] . (26) 

Thus G--n(r) = H,~(~(r-ro), which, when substi tuted in 
(23) and (24), gives 

+co 

f (R ,  ~, Z) -- 2~r, exp [2~izoZ ] Z,  HnJ~ (2~Rr0) 

× exp [in(v 2 -  (37~/2))]. (27) 
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(ii) The circular ring of (i) has a constant line density, 
2, of diffracting materiaL--Then all the H .  are zero, 
except H o which is 2, so the Fourier transform is 

f (R ,  v 2, Z) = 2z~ro2 exp [2ZdzoZ]Jo(27eRro] . (28) 

This result might have been obtained directly from 
(18a) by put t ing g(r, O) = 2~(r-ro)(~(Z-Zo) and using 
the integral (44) for Jo- 

(iii) Constant density over a disc of radius ro.--In 
this case 

G(r, O) == o,Cr, r > ro -< r° '  } (29) 

where a is the surface density of diffracting matter .  
Equat ion (20) becomes 

f (R ,  % Z) 

= exp [2zdzoZ ] exp [2zdRr cos (O-yJ)]dO 
0 

= 2~a exp [2~izoZJ I : r Jo  (2~Rr)dr . 

Using the formula (Jahnke & Emde, 1943) 

I x'n+~Jm (x) dx = Xm+~Jm+ ~ (X), 

we have 

f (R ,  y~, Z) = ~r(ro/R ) exp [2ZdzoZ]J~(2zRro). (30) 

Three-dimensional distributions 
(a) The uniform cylinder.--In this case g(r, O, z)=Q 

for r _< %, - L  _< z _< L, and is zero otherwise. Using 
the same techniques tha t  have been used above, the 
Fourier transform is readily seen to be 

sin (27eLZ) 
f (R ,  ~v, Z) = Q(ro/R)Jl(2~Rro) x~Z (31) 

In the limit of infinite length, the (sin 2z~LZ/xeZ) 
term becomes (5(Z) so the transform is 

f (R ,  v/, Z) --- O(ro/R)J~(2z~Rro)6(Z) . (32) 

This shows tha t  the Fourier transform is zero every- 
where except on the plane Z = 0. 

(b) The thin cylindrical shell .--H it has a finite 
length, say 2L, then g (r, 0, z) = a6 ( r -  r0) for - L _< z _< L, 
and is zero otherwise, where q is the constant surface 
density of the shell. The Fourier transform is 

sin (2~LZ) 
f (R ,  % Z) = 2~aJo (2~Rro) ~Z (33) 

and, as with (i), the Fourier transform of the infinite 
length is obtained by letting L go to infinity- 

f (R ,  v/, Z) = 2~(~Jo(2~zRro)~(Z ) . (34) 

(c) Cylinder with the same symmetry about the z axis 
all along its /ength.~The density function may be 

writ ten g(r, O, z)---G(r,  O)F(z) so tha t  the Fourier 
transform is 

f (R ,  vJ, Z) = I : : F ( z )  exp [2zdzZ]dz 

S fl x G(r, O) exp [2~iRr cos (O-v2)]rdrdO. (35) 
0 0 

The first integral is just the Fourier transform of F(z) 
and it is multiplied by the same double integral tha t  
was encountered in the case of plane distributions 
dealt with above. 

(d) The hel ix .-- t Iere the density function is given 
by equation (4). For  a finite helix, of length L sym- 
metrical about the origin, the Fourier transform is 

f ( R ,  v 2, Z) -- 2r0[1 + (P2/4zc~r~)]½ 
n L  

f 
--~-~ 

X exp iPZ~ 2 exp [i[2~Rr o cos 00+PZ00]]d00. (36) 
~ L  -~----~ 

Using equation (42) of the Appendix, this may  be 
expressed as a sum of Bessel functions: 

~-o0 

fL (R, ~p, Z) --- 2xer02[1 + (Pg/4z~r2o)]½ ~ i n 

sin [ ( P Z - n ) ~ L / P ]  (37) 
x exp [inv/]Jn(2zeRro) z~(PZ-n)  

I t  is apparent  tha t  the origin may be displaced along 
the z axis, or the phase of the helix relative to the 
origin, or both, may  be effected by introducing a 
constant term into the second 5 function of (4), and 
this will multiply each term in (37) by a phase factor. 

For  a single turn  of the helix, take L = P and (37) 
becomes 

+ o o  

f p (R ,  ~p, Z) = 2z~r02[1 + (P2/47eer'~)]½ Z,  i n 

sin [ ( P Z -  n) ze] 
× exp [inv/]Jn(2zeRro) x~(PZ-n)  (38) 

For  Z = (m/P), where m is some integer, (38) reduces 
to 

fp(R,  y~, (re~P)) 
= 2~2r0[1 + (P~/47~r~)]½i " exp [imyJ]Jm(2zRro), (39) 

which shows tha t  on a set of Z planes corresponding 
to a repeat of spacing P on the z axis, the transform 
is given by a single Bessel function. 

As before, the infinite helix is obtained by letting L 
tend to infinity and the Fourier transform of the 
infinite helix is 

(30 

foo (R, yJ, Z) -- 27~2ro[1 + (Pe/47~2r~)]½ ~Y, .i n 
75~--OO 

× exp [inv/]Jn(2zeRro)5(PZ-n ) . (40) 

In  this case the transform is zero everywhere except 
on the planes Z = (m/P), where m is an integer, and 



358 F O U R I E R  T R A N S F O R M S  IN CYLIN 'DRICAL C O - O R D I N A T E S  

on the ruth plane it is determined radially by the 
single Bessel function Jm (2:~Rr0). 

I t  will be observed from the pairs of relations (31) 
and (32), (33) and (34), (37) and (40), tha t  on going 
from a finite to an infinite distribution a factor like 
(sin ~x/x) is replaced by a ~ function. This is a general 
result of diffraction theory if the density is constant 
or periodic in the direction in  which the length be- 
comes infinite. 

I should like to thank Dr W. Cochran of the Caven- 
dish Laboratory for his constructive criticism of the 
first draft of this note, and the South African Council 
for Scientific Research for the award of an Overseas 
Bursary. 

APPENDIX 

Integrals of the form 

fbexp [i(x cos 0+190)] dO 

occur frequently in the above work. For a proper 
t reatment  of them, reference should be made to a 
treatise on Bessel functions such as that  of Watson 
(1944), but  the following brief account should suffice 
for the present work. The integrals may be expressed 
in terms of Bessel functions by means of the wel- 
known expansion 

oO 

exp [ix cos 0] = ~v inJ~(x) exp [- inO],  (41) 

where Jn(x) is the Bessel function of order n, n being 
an integer, and J_n(x) = (-1)'~Jn(x). Hence 

exp [i(x cos O+pO)]dO 

S:ox0 = ~Y, i~Jn(x) [i(p-n)O]dO. (42) 
n ~ - - - O O  

The integrals in (42) may be easily evaluated, so (42) 
provides the required expansion in Bessel functions. 

If b --- a+2:~, (42) becomes 

f~+~exp [i(x cos O+pO)]dO 

oo fa+2~ 
= • inJ,~(x) exp [i(p-n)O]dO. (43) 

For arbi trary p the integrals will still be functions 
of a, but if p is itself an integer, the integrands will 
be periodic with period 2~ and will hence be inde- 
pendent of a. Furthermore, since 

l~+ exp [i(m-n)0] dO = 2~ 
2~ 

, a  

for n = m, and is zero otherwise, (43) reduces to the 
single term 

Ia+~exp [i(x cos O+mO)]dO = 2~imJ,n(x) . (44) 
@ 

This is a well known expression for Bessel functions 
of integral order and is independent of a in view of 
the periodicity of the integrand. 
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